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ABSTRACT

Mukherjee, Prateep. M.S., Purdue University, August 2013. Active Geometric Model:
Multi-compartment Model-based Segmentation & Registration. Major Professor:
Gavriil Tsechpenakis.

We present a novel, variational and statistical approach for model-based segmenta-

tion. Our model generalizes the Chan-Vese model, proposed for concurrent segmen-

tation of multiple objects embedded in the same image domain. We also propose a

novel shape descriptor, namely the Multi-Compartment Distance Functions or mcdf.

Our proposed framework for segmentation is two-fold: first, several training samples

distributed across various classes are registered onto a common frame of reference;

then, we use a variational method similar to Active Shape Models (or ASMs) to gen-

erate an average shape model and hence use the latter to partition new images. The

key advantages of such a framework are: (i) landmark-free automated shape training;

(ii) strict shape constrained model to fit test data. Our model can naturally deal with

shapes of arbitrary dimension and topology(closed/open curves). We term our model

Active Geometric Model, since it focuses on segmentation of geometric shapes. We

demonstrate the power of the proposed framework in two important medical appli-

cations: one for morphology estimation of 3D Motor Neuron compartments, another

for thickness estimation of Henle’s Fiber Layer in the retina. We also compare the

qualitative and quantitative performance of our method with that of several other

state-of-the-art segmentation methods.
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1 INTRODUCTION

In this thesis, we discuss two important problems in computer vision - concurrent

shape/surface registration and segmentation of multiple objects in medical images.

This is an important problem in different clinical and pre-clinical domains. We fo-

cus on two such applications. The first is estimating morphology of motor neurons

(MN) acquired using confocal microscopy in Drosophila larva. Motor Neurons consti-

tute the building blocks for motor circuits in the nervous system. Estimating Motor

Neuron morphology is the first step to understand connectivity patterns of a normal

motor circuit, as well as determining differences between neuronal morphologies in a

wild-type and mutant brain. According to recent study [1], 12 different morphological

types of MNs have been discovered so far, which can be further subdivided depending

on morphological directions.(Fig. 1.2d) The problem of morphology estimation here

is challenging due to diverse structural variations of neuronal compartments, namely

soma, axon and dendrites, both in and across different classes. The second applica-

tion aims at estimating Henle’s Fiber Layer (HFL) thickness in Directional Optical

Coherence Tomography (D-OCT). This is important for an optician to detect macular

degeneration of the retina.

The challenging problem in both these applications is analyzing shape/surface of mul-

tiple interconnected compartments in an image. Our proposed model to solve such

a problem is two-fold. First, we align images acquired from different viewpoints or

sensors, onto a common frame of reference. This is a classical example of image

registration. Shape/surface registration is an interesting problem that manifests it-

self in a number of applications, such as pattern recognition, and image processing.

Essentially such a problem consists of aligning two anatomical structures, which are

represented as curve, or surface. While it is a difficult problem to solve in general,
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for medical images,in particular, it often poses unique challenges, as a result of poor

image contrast, speckle noise and highly varying/asymmetric shapes. For example,

in many clinical scenarios, images from several modalities may be acquired and the

diagnostician’s task is to combine or extract this information to draw meaningful

conclusions. Under such conditions, need for automated tools becomes necessary in

statistical modeling and characterization of samples. Note that if prior knowledge

of data is known, surface alignment can be done using expectation maximization. In

practice however, such prior knowledge of data is generally not available and therefore

more advanced sample-driven implicit techniques need to be introduced.

In the second step of our model, we capture the most important modes of variations

for each compartment to generate an average shape model. The latter is used as

a template to segment different compartments in a new image. This constitutes the

method of image segmentation. Segmentation is a method to extract meaningful areas

(or regions) from a given image. Majority of segmentation methods, in literature, is

focused on the segmentation of a single object (e.g., into foreground and background

regions) in an image. In many applications, however, like MRI-CT diagnosis and cell

microscopy, concurrent analysis of multiple anatomical structures (e.g. gray matter

and white matter) is essential for clinical treatment. This introduces the problem of

multi-compartment image segmentation. Chan and Vese [2] in 2002, first proposed

a multi-phase model for segmentation. Multi-compartment models have since then

been used in many medical applications for concurrent segmentation of anatomical

structures of interest. Most of the well-known methods in this field use level sets [3]

for font propagation. Level sets provide a variational framework to represent contours

of multiple objects in the same image domain. The basic idea of the level set method

is to represent a contour as the zero level set of a higher dimensional function, called a

level set function (LSF), and formulate the motion of the contour as the evolution of

the level function. Muti-compartment models based on level sets use multiple LSFs

to represent contours of multiple objects. However, this becomes computationally
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expensive as the number of objects of interest in an image increases. Also, coupling

of multiple level sets allow for overlaps and gaps in image domain, thus destroying

topological consistency.

In this thesis, we introduce a novel multi-compartment method for automated reg-

istration and segmentation of medical images. Our method improves computational

efficiency as well as preserves topology. We apply our method to 3D and 2D medical

images. At the end of this chapter, we highlight the contributions made in this work.

In chapter 2, we provide an overview of the related work in this area that are related

to the applications treated in this thesis. In chapter 3, we present a novel method

to represent shapes of anatomical structures. In chapter 4, we propose a variational

method, using our novel shape descriptors, to align different images. In chapter 5, we

discuss the second step of our framework to concurrently segment multiple objects

in an image. Finally, in chapter 6, we discuss the data acquisition techniques for

our applications, as well as provide detailed qualitative and quantitative evaluation

of our method. In the rest of this chapter, we describe our two applications in brief

and throw light on the need for precise registration and segmentation of multiple

structures to derive meaningful conclusions.

1.1 Motor Neuron Morphology Estimation

Normal locomotive behavior is fundamentally determined by the precise patterns of

motor neuron(MN) connectivity that are dictated by the selective connection of mo-

tor axons with muscle targets as well as specific dendritic input from presynaptic

neurons. (Fig. 1.1) In the vertebrate spinal cord, Motor Neurons are organized into

columns, groups of MNs that target individual muscles are clustered into Motor Neu-

ron pools [4]. Different MN pools elaborate distinct morphology patterns and respond

to sensory stimulation with different latencies, demonstrating that the selectivity of

synaptic input is directly influenced by the differential patterning of Motor Neuron
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(a) Example of the image stacks used to detect and trace morphologically pre-determined motor

neurons in part of the Drosophila CNS. Left: representative slices of the stack. Middle: the

collapsed stack image, i.e. the intensity sum along z-axis. Right: two magnified regions chosen

from different depths at the same x-y location, highlighted in red in the collapsed stack image

(b) Data(green channel) in 3D, after basic prepro-

cessing

(c) Desired neuron partitioning into

compartments: soma(red),axon(green)

and dendrites(magenta)

Figure 1.1. Global neuron morphology estimation
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structures in the spinal cord [5]. Therefore, determining how different MN subtypes

pattern and organize their morphology is a crucial step towards understanding how

motor circuits are assembled to control locomotion.

The Drosophila embryonic central nervous system comprises the developing brain and

ventral nerve cord(VNC). (Fig. 1.2) The VNC, which can be considered functionally

analogous to the mammalian spinal cord, is segmentally reiterated and bilaterally

symmetrical with respect to the ventral midline. There are approximately 400 neu-

rons, including an estimated 38 Motor Neurons, within each hemisegment(or half-

segment) of the VNC. (Fig. 1.2a) Abdominal hemisegments in the embryo comprise

30 stereotyped body wall muscles, each of which is innervated by one of more of the

38 Motor Neurons. The muscle innervation pattern of individual Motor Neurons is

further highly stereotyped making embryonic Motor Neurons uniquely identifiable [6].

During larval development, dendrites of these abdominal Motor Neurons undergo con-

siderable growth and dendritic branching is dramatically increased, likely reflecting

extensive changes in synaptic connectivity that are required for more complex larval

behaviors such as peristaltic movements required for normal locomotion.

According to the study in [1], the morphological features that uniquely describe indi-

vidual Motor Neuron subtypes are: relative position between the soma and the CNS

center; relative position between the axon and the CNS center; direction and extent of

the axon; position of the dendrites along the axon; relative positions of the dendrites

and the soma; extent of the dendrites. To calculate these features, and apart from

the segmentation of the neuron volume from its surroundings, we need to estimate

the positions and shapes of the individual compartments.

In the next section, we describe another such application, in the domain of optical

coherence tomography, where estimation of morphology of anatomical structures is
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(a) (A) Whole larva with expressed

with GFP, also showing Central Ner-

vous System(CNS), i.e. brain and Ven-

tral Nerve Cord(VNC). (B) Magnifica-

tion of the VNC in the red box in (A).

(C) Single MN clones.

(b) Neuron volume along with labeled

compartments

(c) Image stacks, one for each chan-

nel(green:neuron images; red:CNS refer-

ence images

(d) MN morphologies, shown in 2D

ground-truth sketches: the arrows

indicate the dendrite positions and

extends, the disk illustrates the

soma, the curved lines show the ax-

ons, while the dotted lines represent

the VNC midline.

Figure 1.2. Image datasets for modeling individual neurons

essential for clinical diagnosis. The next application is 2D, that is, it deals with

segmenting a layer in a planar image.
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(a) Retinal layer with labeled parts (b) OCT B-scan images showing direc-

tion of scanning

(c) Directed OCT images (A) Central entry pupil position; (B) Temporal displacement of entry

beam; (C) Nasal displacement of the entry beam; (D-F) Vertical scans at each pupil entry position.

Figure 1.3. Image datasets for D-OCT

1.2 Henle’s Fiber Layer Thickness Estimation in OCT

Spectral domain optical coherence tomography(SD-OCT) is an ubiquitous technique

in opthalmology that utilizes a broadband infrared light source and interferometry to

generate depth-resolved reflectivity profiles. By analyzing interference fringes using a

reverse Fourier transformation, anatomical details can be acquired with a resolution
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of 5 µm. Utilizing horizontal and vertical scanners, cross-sectional and volumetric

reconstructions of the retina can be ascertained.

Directional OCT(D-OCT) modifies SD-OCT by acquiring images from multiple pupil

positions. The angle of incidence of the imaging beam on the retina is modified to at

least three different positions using this technique - consequently tissues that demon-

strate reflectivity will only appear hyper-reflective when illuminated from certain

positions. Because it is comprised of thin microtubules, one of the directionally re-

flective tissues in the retina is Henle’s Fiber Layer(HFL). During standard SD-OCT

acquisition, HFL is not routinely discernible as a distinct layer and blends into the

adjacent retinal layers.

D-OCT allows the distinct visualization of HFL, and consequently allows the under-

lying outer nuclear layer(ONL), the retinal layer that contains photoreceptor nuclei to

become visible and quantifiable. ONL thining is responsible for vision loss in a num-

ber of retinal degenerations including age-related macular degeneration(AMD) [7],

the most common cause of irreversible vision loss in the United States and Europe.

D-OCT imaging of the retina therefore could provide to direct ONL loss, and could

provide a predictor of AMD and a biomarker for its progression.

When applying D-OCT for in vivo imaging of the human retina, small movements of

the head and saccadic eye movements leads to small axial movements of the retina

relative to the imaging geometry during image recording. This behavior will in reality

lead to decorrelation of the speckle noise from one image to the next when recording

a series of B-scans. The B-scans obtained from different positions of the pupil result

in central, temporal and nasal alignment of the retinal wall (Fig. 1.3c). Diagnosis of

the pathological subjects requires a proper alignment of the different B-scans onto a

common frame of reference.
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1.3 Thesis Contributions

Three main contributions are made in this thesis:

1. Multi-Compartment Shape Representation: A novel model for representing con-

tours of multiple objects of interest in the same image domain is developed. Our

proposed shape descriptors, called multi-compartment distance functions(MCDF)

has three main advantages. First, it uses the powerful level set function for rep-

resenting boundaries, which provide flexible topological changes and yield con-

tours with no self-intersections. Second, we reduce the computational cost of

traditional multi-phase level set methods by decomposing them into fewer level

sets. Third, our shape descriptors are invariant to rotation and translation,

which makes them ideal for global affine motion correction.

2. Landmark Free Framework for Training: Our proposed MCDFs make our train-

ing phase completely free of landmarks. This is an important step towards auto-

mated feature selection and training. Moreover, our model requires less expert

interveneince which significantly saves resources. MCDFs also make our model

less prone to human errors and thus provides a robust framework for generating

average shape models.

3. ASM with Variational Shape Constraints: We improve the performance of tra-

ditional ASMs by incorporating variational shape constraints. Important ad-

vantages of such a model over existing methods are that it preserves topology in

the image domain and that the fitted model do not allow overlaps or vacuums.



www.manaraa.com

10

2 PREVIOUS WORKS

This thesis focusses on two main areas of computer vision - Registration and Seg-

mentation. In sections 2.1 and 2.2, we describe drawbacks of some of the existing

methods used for registration and segmentation in biomedical images. In sections

2.3 and 2.4, we analyze the state-of-the-art methods in MN morphology and HFL

thickness estimation. We also throw light some of the drawbacks of these methods,

as well as propose possible solutions.

2.1 Image Registration

At its simplest, image registration involves estimating a mapping between a pair

of images. One image is assumed to be stationary, called the reference(IT ) image,

whereas the other, called the source(IS) image, is spatially transformed to match it.

In order to transform the source to match the reference, it is necessary to determine a

mapping from each voxel position in the reference to a corresponding position in the

source. Mathematically, this can be stated as T ∗ = argminT C(IT , IS ◦ T ) + αS(T ),

where α is a constant governing the strength of the penalty. The most important

criteria of modeling such a problem relies on efficient and robust representation of

shape features and choosing a suitable optimization procedure to perform the regis-

tration. Such a framework consists of following components (i) shape representation,

(ii) transformation and (iii) registration criterion.

Shape representation is the most important component for registering geometric

shapes. The use of point-based snakes [8], Fourier descriptors, level set represen-

tations [3] are some well-known approaches to represent shapes as well as their vari-

ations. Point clouds [9] are the simplest shape representations used, but they suffer
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from being sensitive to the selection of the number of points. In addition, they require

a large number of parameters to deal with shape deformations. Interpolation tech-

niques like splines [10], triangulated surfaces [11], deformable models [12] attempt to

address these issues through a parametric representation of the shapes or surfaces.

In addition, Medial axis [13] and more recently, level-set functions [3] adopt the idea

of representing shapes using distance transforms.

Transformation refers to the selected global, local or hierarchical (global-to-local) fit-

ting. Global transformation models apply to an entire shape; these type of transfor-

mations are either rigid, similarity-based, affine or perspective. Local transformation

models, on the other hand, represent point-wise deformations that deform a shape

locally and non-rigidly. A detailed discussion of these is provided in Chapter 4. Thin

Plate Splines(TPS), Iterative Closest-Point(ICP) [14], and optical flow [15] are some

examples of local transformations. Hierarchical models are also popular since they

cover the entire transformation domain using both global and local transformations.

Registration Criterion is the approach used to recover the optimal transformation

parameters given a shape representation and a transformation model. Popular ap-

proaches in this area can be classified into two sub-categories. The first is to establish

geometric feature correspondences and then estimate the transformation parameters

using the correspondences [16]. The second is to recover the optimal transformation

parameters through optimization of energy functionals [17].

In this thesis, we propose a shape registration method in a variational framework.

Our overall approach is depicted in Fig. 2.1. The implicit shape representation is

generic, that is it can handle naturally shapes of arbitrary dimension and topology,

and can also be used in statistical shape modeling. The representation is also stable

and robust to shape perturbations and noise.
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(a) (b) (c) (d) (e)

Figure 2.1. (a) Initial condition(IT in blue, IS in red); (b) Distance
map of IT ; (c) Distance map of IS; (d) Global alignment, only zero level
sets shown; (e) Result after deformable registration; transformed source
shape(in green) overlaid on the target shape(in blue).

In our approach, the optimal global and local transformation parameters are recov-

ered by optimizing Sum-of-Squared-Differences(SSD) criterion. This choice is primar-

ily because the many degrees of freedom in local deformations require input equality

to achieve a global optimum. Other suitable criteia might be Normalized Cross-

Correlation(NCC) and Mutual Information(MI). Our method is powerful to adapt to

any of these optimization criterion, and the choice is driven by the application.

2.2 Image Segmentation

Image Segmentation is the method of clustering pixels into salient image regions,

i.e.,regions corresponding to individual surfaces, objects, or natural parts of objects.

Segmentation has a variety of interpretations that depends on each application. For

example, given an image and some clues of its contents, the goal of segmentation

is to decompose the image into superpixels, which are roughly coherent in color and

texture. The application of fitting lines to edge points is also a segmentation problem,

wherein the goal is to organize a some tokens that belong together because they fit

a line. Cosegmentation [18] is another useful application of segmentation methods,

where the goal is to find a fundamental matrix to a set of feature points on images

which share a common foreground. A property ubiquitous to all of these applications

is that pixels, tokens, super-pixels etc that belong together conform to the same
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model. Segmentation methods are broadly divided into two categories (i) Bottom-

up, and (i) Top-down.

(a) Original Image (b) Oversegmented Image (c) Final result

(d) Sample Training Image (e) Average Shape Model (f) Model fitting

Figure 2.2. Top Row: Bottom-up segmentation; Bottom Row: Top-down
segmentation.

Bottom-up segmentation approaches use different image-based criteria and search al-

gorithms to find heterogeneous segments within the image. A common bottom-up

approach is to use a graph representation of the image (with the nodes representing

pixels or super-pixels) and partition the graph into subsets corresponding to salient

image regions. The resulting segmentation takes into account texture, average inten-

sity and boundary properties if image-regions. The segmentation applies successive,

recursive coarsening, in which homogeneous segments at a given level are used to

form larger homogeneous segments at the next level. In this manner, the image is

segmented into fewer and fewer segments. The algorithm also provides a measure of

saliency that ranks segments according to their distinctiveness. Uniform segments
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that contrast with their surrounding will be highly salient, and will therefore have a

very low energy. Examples of bottom-up segmentation are Normalized cuts, Graph-

cuts, Mean-shift methods [19]. An example of bottom-up segmentation is shown in

Fig. 2.2, where the segmentation result looks quite good.

Top-down segmentation approaches rely on acquired class-specific information, and

can only be applied to images from a specific class. These include deformable tem-

plates, active shape models(ASM) [20] and active contours [8]. The high variability of

shape and appearance of objects can be dealt with by working with image patches(or

fragments). These patches are used as shape primitives for the class. The approach

can be divided into two stages - training and fitting. In the training stage, a set

of informative image patches is constructed from training data to capture possible

variations in the shape and appearance of common object parts of a given class. A

set of average features (i.e., features that are highly likely to be detected in class

images compared with non-class images) are derived from this training set. These are

used in the segmentation stage to classify a novel input image as well as detect the

approximate location and scaling of the corresponding objects.

From the above categorization, it is intuitive that top-down segmentation works better

in case of large variations in topology or morphology of the objects. The drawback

of top-down methods are that they require considerable manual labor to annotate

landmarks or distinctive features of objects in training data set. Our work is moti-

vated in alleviating this problem and propose a variational framework for this purpose.
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2.3 Related Work in MN Morphology Estimation

In this section, we focus in describing existing work in estimating neuronal structures.

To better understand the context of this work, first we introduce the technique to

obtain neurons at single-cell resolution.

Previous efforts to visualize morphology of single MNs have relied on dye-backfilling

methods such as DiI. DiI is a lipophilic dye that is taken by the axon and diffuses

along the cell membrane to reveal neuronal morphology. However, this technique is

limited in that neurons can only be labeled one at a time. Furthermore, dye-labeling

methods are not compatible with long-term sample preservation, limiting the use of

secondary markers. To overcome these limitations, we use mosaic analysis with a

repressible cell marker (MARCM) [21], a genetic technique that allows us to label

and image individual MNs (Fig. 1.1b). The use of fluorescent proteins used in dy-

ing neurons allows for high-resolution in vivo imaging with minimal photobleaching,

reduced phototoxicity and enhanced labeling of the neuronal membrane. We discuss

the details of MARCM technique in Chapter 6.

In the last decade there has been an increasing interest in the problem of segmenting

tubular and tree-like structures such as the neuron dendrites. For example, Zhou et

al. [22] use a level set-based approach to segment precisely dendrites from 2-photon

microscopy images. Peng et al. [23] reconstruct neurites (axons and dendrites) with

fuzzy boundaries using a region-based deformable model initialized by detecting neu-

rite regions and connecting them in a shortest-path manner. In the work of [24],

the tubular-like structures are segmented with shape-constrained geodesic active con-

tours, after braching points are manually annotated in dendrites imaged with confocal

microscopy, while in [25] a method for automated branching points detection is pre-

sented. In [26], the tree structure of the dendrites is estimated from multi-photon

microscopic images, using skeletonization and splines. Dima et.al [27] use wavelets

to trace the branches boundaries, while Uehara et. al [28] use confocal and 2-photon
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microscopy images to show a shape-driven approach where the dendrite branches are

approximated with cylinders that serve as topology constraints for a wave propaga-

tion method. In the work of [29], dendrite structures are estimated by detecting their

skeletons and then applying intensity-based fuzzy c-means clustering, while in [30] the

detected skeletons are used in a graph-theoretic approach to provide fine tracing of

the dendrite branches. In the recent works of Kaynig et.al [31] neuron boundaries are

estimated from electron microscopy data with an energy minimization using graph

cuts. Finally, it is worth noting the existence of software packages, such as Neurolu-

cida1, used in [32] for tracing dendritic structures and calculating their morphology

statistics, and NeuronStudio2.

2.4 Related Work in HFL Thickness Estimation

Images of optical tomography modality are obtained from both healthy and diseased

subjects. The latter suffer from drusen related to non-exudative age-related macular

degeneration(AMD). All eyes are scanned with the Cirrus OCT instrument by a sin-

gle experienced technician. Horizontal frame-averaged B-scans acquired with Cirrus

at the two extreme horizontal entrance positions are used to measure the contribution

of different zones of reflectivity between the external limiting membrane(ELM) and

the inner plexiform layer(IPL) in five right eyes. (Fig. 1.3a) Specifically, the side of

B-scan that allowed full visualization of the transition to the outer plexiform layer

(OPL) is used for this analysis where the inner segment/outer segment (IS/OS) was

1 mm from the foveal center. The distance from the ELM to the posterior edge of

the OPL and the distance from the ELM to the edge of the observed hyporeflective

zone within this layer is measured along a line perpendicular to IS/OS. The relative

contribution of this hyporeflective zone corresponding to HFL is reported as a per-

centage of the total distance between the ELM and the OPL. Finally, frame-averaged

1MBF Bioscience http://www.mbfscience.com/neurolucida
2Computational Neurobiology and Imaging Center, Mount Sinai School of Medicie, NY: http:

//research.mssm.edu/cnic/tools-ns.html
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B-scans obtained from each subject are exported to ImageJ, where a manual tool is

used to segment the images collected at each of three pupil entry positions (nasal, cen-

tral, temporal). Segmented layer data is then processed through custom computing

software to determine the thickness between the ELM and the outer edge of the OPL.

In this thesis, we apply our model to the above two applications. Our model is a

variational framework built over the Active Shape Models, introduced by Cootes et al

[20]. Our goal in the former is to provide a computationally comprehensive description

for the entire structure of larval motor neurons, with simultaneous segmentation and

labeling of the individual morphological compartments. In the latter application, we

train our model on retinal D-OCT images and then build a model to segment the

HFL layer. This provides an automatic method for measuring HFL thickness.
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3 SHAPE REPRESENTATION

Advances in medical imaging technology have provided the ability to acquire high res-

olution 3D medical images. Image analysis techniques provide more advanced visual-

izations and aid in disease diagnosis. For example, automatic extraction of anatomical

geometry from a medical image is useful in planning radiation beam therapy to apply

maximum radiation close to a tumor while minimizing exposure to surrounding or-

gans. Analysis of diffusion tensor magnetic resonance images of neonatal brains can

give information about the early stages of development in brain connectivity.

These examples benefit from a particular tool from medical image analysis known

as statistical shape analysis which describes the geometric variability of anatomy.

Most approaches in shape analysis have used either used linear parametric models of

anatomic shape, and thus, linear statistical techniques to analyze the shape variability.

Parametric models suffer from being robust to high degree of variability in shapes, like

bending and twisting. On the other hand, richer models of shape and richer variations

of shape can be achieved with nonlinear and/or nonparametric models. For example,

level-set distance functions [3] have shown great promise in representing the interior of

anatomic structures and describing shape changes in intuitive terms such as bending.

3.1 The Level Set Method

Level set methods are based in the context of fluid mechanics and provide both

a nice framework and efficient practical tools for solving Partial Differential Equa-

tions(PDE’s). The idea of level-set evolutions is as follows. We consider a family of

hypersurfaces S(p, t) in <3, where p parametrizes the surface and t is the time, that

evolve according to the following PDE:
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∂S
∂t

= βN (3.1)

with initial condition S(t = 0) = S0, where N is the inward unit normal vector of S,

β is a velocity function and S0 is some initial closed surface. They key idea in [3] is

to introduce the function u : <3 ×< → < such that

u(S, t) = 0 ∀t

By differentiation (and along with N = − ∇u|∇u| and Eq. (3.1), we obtain the Hamilton-

Jacobi equation:

∂u

∂t
= β |∇u|

with initial conditions u(., 0) = u0(.), where u0 is some initial function <3 → < such

that u0(S0) = 0.

3.2 The Multi-phase Level-set Method

In numerous practical applications, images consist of numerous objects of interest.

For example, in CT and MRI diagnosis, it is necessary to accurately segment white

matter and grey matter simultaneously. Using multiple level set functions, multi-

phase deformable models can segment multiple objects simultaneously [2, 33]. There

are largely two kinds of approaches for multi-phase models. One is to associate each

region with a level-set function and add some constraints [33]. The other is to rep-

resent regions by the combination of several level set functions [2]. The latter model

permits multiple object boundaries, and guarantees no overlaps or vacuums. More-

over, it also substantially reduces the computational cost as the number of objects

or compartments grow. However, this approach has two key limitations. Firstly,

image-based forces in the multiphase framework are applied to the level set functions

rather than to the objects themselves. Thus, it is possible that while the lengths

of the level set functions are minimized, it may not be so for the boundaries of the
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objects themselves. Secondly, the evolution/optimization can get ”stuck” in situa-

tions where a pixel needs to acquire a label that can be reached only by changing two

level set functions at the same time. The existing evolution strategy cannot resolve

these situations, which are also commonly found with an increasing number of objects.

In this thesis, we present a multiple object geometry model that (1) guarantees no

overlaps or gaps, (2) includes only a few level-set functions independently of the

number of regions, (3) can enforce relationships and topological constraints on any or

all objects and groups of objects if desired, and (4) the framework can easily be scaled

to higher dimensions (4D and so on) without significant changes to the underlying

model. In this framework, the evolution of the level set functions representing any

number of objects or compartments is recast into the evolution of a fixed, small

number of distance functions and an equal number of corresponding label functions.

3.3 Definitions and Related Notations

Let I be an image defined on a domain Ω, dim(Ω) = d where d = 2 for 2D and d

= 3 for 3D. We consider N objects O1, O2, · · ·ON , each containing points from the

domain x ∈ Ω such that these objects cover the whole domain with no overlaps or

vacuums. Formally, ∪Ni=1Oi = Ω and Oi ∩Oj = ∅,∀i 6= j.

Object signed distance functions, denoted Φi are commonly used in the level set

literature for their desirable numerical properties. These functions are negative inside

their respective objects, positive outside, and give the distance to the object boundary

at every point x. So, if E(x, Oi) = miny∈Oi
‖ x− y‖ , then

Φi(x) =


0, x ∈ Oi

+E(x, Oi), x ∈ R(Oi)

−E(x, Oi), x ∈ [Ω−R(Oi)]

(3.2)
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Label function Next, we define the set of label functions that describes the local con-

figuration of neighboring objects at x as follows:

∀x, L0(x) = i iff Φ1(x) > 0,

L1(x) = argmin
j 6=L0(x)

Φj(x),

L2(x) = argmin
j 6=L0(x),L1(x)

Φj(x),

... (3.3)

LN−1(x) = argmin
j 6=Lk(x),k=0,...N−2

Φj(x)

The label functions L0, L1, · · ·LN−1 give a detailed description of the configuration

of the objects. In particular, L0 is the zero-level label function and the first-level

label L1 identifies the closest neighboring object at each point. The φj function gives

the distance to the boundary of Oj, and hence, minimizing over j yields the nearest

object. More generally, Lk(x) = i, 1 ≤ k ≤ N − 1, if and only if Oi is the kth closest

neighbor to x.

Distance function Having defined the label functions for each object Oi ∈ Ω, let us

define the N distance functions, or zero-order level set functions for each compartment.

∀x, ϕ0(x) = ΦL1(x),

ϕ1(x) = ΦL2(x)−ΦL1(x),

ϕ2(x) = ΦL3(x)−ΦL2(x),

... (3.4)

ϕN−2(x) = ΦLN−1
(x)−ΦLN−2

(x),

Here, the particular level set functions that are used in the right hand side of this

decomposition are determined by the labels L1, L2, · · ·LN−1. These distance functions
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specify the additional distances one must travel to reach the succession of next-closest

neighbors. For example, ϕ0 is the distance from x to its first neighbor and ϕ1 is the

additional distance that must be traveled to get to the second neighbor, and so on.

(a) (b) (c) (d)

Figure 3.1. Label and Distance functions for a ”toy” example (colors indicate
compartment labels) Panels (a-c): top row-L0, middle row-L1, bottom row-L2.
(a) Color-labeled compartments(green, red and blue), (b) a cross-section (plane
indicated in (a)) of their label functions, and (c) corresponding cross-sections of
their distance functionsϕ0, ϕ1, ϕ2; (d) mcdf s for each compartment i = 1, 2, 3,
from top to bottom respectively.

Fig. 3.1(a-c) shows an example of this label-distance decomposition on a ”toy” image.

Note that the 3 connected objects are shown in 3D, the label and corresponding

distance functions are shown on a horizontal slice from the 3D volume.
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Multi-compartment Distance Functions(MCDF) Given all the label and distance func-

tions at a point x, the signed distance function of object Oi can be recovered as

follows:

φi(x) =



ϕ0(x), i = L0(x)

−ϕ0(x), i = L1(x)

−ϕ0(x)− ϕ1(x), i = L2(x)

−ϕ0(x)− ϕ1(x)− ϕ2(x), i = L3(x)
...∑N−2

j=0 −ϕj(x), i = LN−1(x)

(3.5)

It is seen here that in order to recover all the signed distance functions, we need all

the label and distance functions. Therefore, so far, there is apparently no advantage

to the proposed decomposition, as it does not appear to lead to a compact represen-

tation or lower complexity.

However, a key observation here is that only signed distance values near object bound-

aries are required to accurately carry out geometric level set computations. In fact,

topology at x should be derived from object L0 to which x is assigned and the object

L1 that is closest to x. Therefore, the higher-order terms in (3.5) can be removed in

order to compute geometric deformations. Accordingly, we simply drop the higher-

order terms in (3.5) to get the following approximate signed distance functions:

2D:

φi(x) =


ϕ0(x), i = L0(x),

−ϕ0(x), i = L1(x),

−ϕ0(x)− ϕ1(x), i 6= L0,1(x)

(3.6)

3D:

φi(x) =



ϕ0(x), i = L0(x)

−ϕ0(x), i = L1(x)

−ϕ0(x)− ϕ1(x), i = L2(x)

−ϕ0(x)− ϕ1(x)− ϕ2(x), i 6= L0,1,2(x)

(3.7)
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The functions φi(x) resulting from this decomposition are positive inside and negative

outside each object and are Lipschitz continuous. They are therefore legitimate level

set functions despite being only approximations to the true signed distance functions.

It is worth noticing that the number of functions in the approximations for 2D and

3D are different. This is because of the difference in structure of boundaries between

objects. In 2D, any boundary between neighboring objects is either a curve segment

(between two objects) or a point (where three or more objects meet). In 3D, the

boundaries are made of surface patches (between two objects), curve segments (be-

tween more than three objects), and points (for four or more objects). Therefore, in

order to describe all the possible boundaries, we need to be able to describe all these

structures in their respective spaces. The curves are defined with one level set func-

tion in 2D, and the points joining them require two functions. Similarly, surfaces in

3D require one function, curves are defined as the intersection of at least two surfaces,

and points require three surfaces.

3.4 Training with MCDFs

In this section, we describe the use of the previously defined mcdf s in generating

discriminative shape descriptors for the training datasets. We apply the above model

to D-OCT B-scans (2D) and MN volumes (3D). These are discussed in sequence.

D-OCT Let us consider only 3 compartments in Fig. 1.3(a). The compartments are

denoted as follows: portion of the eye above the retina, the retinal layer and portion

below the retina. Note that such an assumption is only for the sake of simplicity of

the model, and can easily be extended to N compartments for specific applications.

First, we initialize each compartment by the zero-level label function L0. The initial-

ization is done by K-means method, wherein we input some initial seeds and number

of compartments(=3). To compute the higher order label functions, we look at pairs
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Figure 3.2. Top: Original Image and Label functions Middle: Joint part and

distance functions. Bottom: Multi-compartment distance functions for each

compartment Oi.

of objects. Consider the shared boundary bij = |Oi ∩Oj| between two adjacent com-

partments Oi and Oj, and their union Bij = |Oi ∪Oj|. The joint part of Oi and Oj

is defined as:

Jij =
{
x ∈ Oi ∪Oj s.t. miny∈bij ‖x− y‖ < minz∈Bij ‖x− z‖

}

It is to be noted that joint parts of two objects is empty if they have no shared

boundary. Next we define L1 as follows:

L1(x) = j, if x ∈ Oj ∩ Jij∀i, j, i 6= j

With this notation, x is in Jij if {L0(x), L1(x)} is equal to {i, j} or {j, i}.
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Having defined the label functions, we now describe the distance functions as follows:

ϕ0 = φL0

=

3∑
i=1

max(Φi, 0),

ϕ1 = φL1 − φL0

=
3∑
i=1

max(Φij , 0)−max(Φi,Φj , 0)

where Φi and Φij are the level set functions (3.2) of Oi, and Oi ∪ Oj. Finally, the

mcdf s of each compartment are computed as,

φi(x) =


ϕ0(x), L0(x) = i;

−ϕ0(x), L0(x) 6= i, L1(x) = i;

−ϕ0(x)− ϕ1(x), otherwise

(3.8)

Fig. 3.2 illustrates the label functions and mcdfs of each compartment.

The relationship between φi, i = 1, 2, · · ·N , and the new functions ϕ0, ϕ1, L0, L1

being set, any curve transformation originally applied to φ1 can be transferred to

ϕ0, ϕ1, L and F . Furthermore it can also be proven that this representation [φi] is

invariant to translation and rotation.

Lemma 1 (Invariance) The mcdf shape descriptors in (3.8) are invariant to rota-

tion and translation.

Proof Paragios et al [34] showed that Φ(x) (Eq. 3.2) is invariant to rotation and

translation. We prove the above lemma by showing that φi for compartment O1

corresponds to Φ(x). It can be proved similarly, without loss of generality, for other

compartments in Ω. Let, x = (x, y) be a point in IT , which is transformed to x̂ in IS
after rotating IT by θ angle and translating by a vector (Tx, Ty). Thus,
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Figure 3.3. Sketch of the three compartments and their distance functions.

A(x, y) =

x̂
ŷ

 = s

 cos(θ) sin(θ)

−sin(θ) cos(θ)

x
y

+

Tx
Ty

 (3.9)

The use of inverse transformation between IS and IT for x leads to the following

equation: x̂
ŷ

 =

 xcos(−θ) ysin(−θ)− Tx

−xsin(−θ) ycos(−θ)− Ty

 (3.10)

Case 1 (L0(x) = 1) In this case, x lies in O1. Therefore, ϕ0(x) = Φ1(x), since only

Φi is positive, while Φj, j 6= i are all negative. Therefore,

φ1(x) = Φ1(x) = miny∈O1 ‖x− y‖ . (3.11)

Case 2 (L1(x) = 1) In this case, x lies in the closest neighbor to O1, which is O2.

All other distance functions get cancelled in φ0. Therefore,
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φ1(x) = Φ2(x) = miny∈O2 ‖x− y‖ (3.12)

Case 3 (L0,1(x) 6= 1) In this case, x lies in O3 (Fig. 3.3). Therefore, φ1(x) =

−ϕ0(x) − ϕ1(x). It can be easily shown that in ϕ0, the only term remaining is Φ3.

Similarly, in ϕ1, the term remaining is Φ23 −Φ3. Therefore,

φ1(x) = −Φ3(x)− (Φ23(x)−Φ3(x))

= −Φ23(x) = −miny∈O2∪O3
‖x− y‖ (3.13)

Hence we prove the mcdf shape descriptors are affine transformation invariant.

Thus, it is clear that mcdf descriptors for compartments in image are invariant to

affine transformations. Also, these descriptors describe the topological character-

estics of the compartments, both locally and globally. Therefore, they provide robust

shape cues for image registration.

Motor Neurons Without loss of generality, let us consider a volume that consists of

three sub-volumes (compartments) {Oi|i = 1, 2, 3}, with i denoting the part labels,

which, in our application, correspond to soma, axon and dendrite of a neuron with

a single dendrite. If Ω is the 3D image domain and x denotes location in Cartesian

coordinates, ∀x ∈ Ω three label functions are defined as:

L0 : L0(x) = i, if x ∈ Oi;

L1 : L1(x) = j, if Oj is first closest neighbor to x;

L2 : L2(x) = k, if Ok is second closest neighbor to x;

Then the distance functions can be computed as follows:



www.manaraa.com

29

ϕ0(x) =
3∑
i=1

max(Φi, 0)

ϕ1(x) =

3∑
i,j=1,i 6=j

{max(Φij , 0)−max(Φi, 0)}

ϕ2(x) =
3∑

i,j,k=1,i 6=j 6=k
{max(Φijk, 0)−max(Φij ,Φjk,Φik, 0)}

where Φi, Φij and Φijk are the distance transforms of the compartment Oi, Oi ∪Oj,

and Oi ∪Oj ∪Ok.

Then mcdf of the i-th compartment is defined as:

φi(x) =



ϕ0(x), L0(x) = i;

−ϕ0(x), L1(x) = i;

−ϕ0(x)− ϕ1(x), L2(x) = i;

−ϕ0(x)− ϕ1(x)− ϕ2(x), L0,1,2(x) 6= i

Fig. 3.4 illustrate the multi-compartment label and distance functions for a neuronal

volume. In Fig. 3.4(d), it is seen that topology of the shared boundaries of each

compartment can be captured using level set functions. Notice that transformation

of Ω→ < recasts this problem as joint multi-modal registration of each compartment.

Such transformation is very suitable to track moving interfaces.

Note that, our shape descriptors are completely non-parametric. This avoids the

task of training our model for suitable parameter configurations. Multi compart-

ment distance functions provide topologicial features in images, like MN, where local

shape features are indiscernible. This representation provides a feature space in which

objective functions that are optimized using a gradient descent method can be con-

veniently used. One can prove that the gradient of the embedding distance function

is a unit vector in the normal direction of the shape, and the representation satisfies
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(a) (b) (c) (d)

Figure 3.4. Label and distance functions of a neuron(colors indicate compart-
ment labels). Panels (a)–(c): top row -L0, middle row-L1, bottom row-L2. (a)
Color-labeled volumes, (b) a cross-section of each case, and (c) correspond-
ing cross-sections of the distance functions ϕ0,ϕ1, ϕ2; (d) mcdfs for the three
compartments - top: φS̄ (soma); middle: φĀ(axon); bottom: φD̄ (dendrite)

a sufficient condition for the convergence of gradient descent methods, which require

continuous first derivatives. Furthermore, the use of the implicit representation fa-

cilitates the imposition of smoothness constraints since one would like to align the

original structures as well as their clones that are positioned coherently in the image.

In Chapter 4, we show the proposed representation of shape and topology augments

even relatively simple optimization procedures, like Sum-of-Squared-Distance (SSD).

One reason for this is the inherent convex curvature of mcdfs. The convex subspace

of level set functions guarantee a global minimum, which may not be unique. In

this application, we seek a global alignment of each compartment so as to get an
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average contour model. For registering D-OCT images, we incorporate local defor-

mations along with global motions for estimation of registration parameters. Thus,

our proposed framework is variational, which couples global transformation along side

pixel-wise local deformations.

One concern associated with the level set distance functions, in general, is its ef-

ficiency in registration, since it has one dimension higher than the original shape.

However, we alleviate this concern by using only a narrow band around the shape in

the embedding space as the sample domain for registration. This significantly speeds

up the execution, while producing comparable results to that using the entire image.
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4 REGISTRATION METHODS

We introduced the concept of registration briefly in Chapter 2. In this chapter, we

analyze in details the different methods for medical image registration. Registration,

however, is an ubiquitous method that is applied to numerous domains, like satellite

imaging, military automatic target recognition(ATR), remote sensing(multispectral

classification, environmental monitoring, change detection), image mosaicing, weather

forecasting, creating super-resolution images, integrating information into geographic

information system(GIS), compiling and analyzing images and data from satellites.

The primary goal in all of these applications is to project multiple data onto a com-

mon frame of reference for improved visualization and analysis. In medical imaging,

registration is a powerful tool for clinicians to better visualize medical data. Image

registration is the process of overlaying two or more images of the same scene taken

at different times, from different viewpoints or by different sensors.

As mentioned earlier, registration is used for alignment of diverse variety of images,

acquired from different modalities. Nevertheless, the majority of the registration

methods consists of the following four steps.

• Salient and distinctive objects (closed-boundary regions, edges, contours, line

intersections, corners etc.) are manually or, preferably, automatically detected.

For further processing, these features can be represented by their point repre-

sentatives (centers of gravity, line endings), which are called control points(CPs)

in the literature.

• Next, the correspondence between the features detected in the reference image

and those detected in the source image is established. Various feature descrip-
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tors and similarity measures along with spatial relationships among the features

are used for that purpose.

• The type and parameters of the mapping functions, aligning the source im-

age with the reference image, are estimated. The parameters of the mapping

functions are computed by means of the established feature correspondence.

• The source image is transformed by means of the mapping functions. Image

values in non-integer coordinates are computed by interpolation technique.

Estimating the transform model depends on the application at hand as it requires a

priori known information about the acquisition process and expected image degra-

dations. Hence, depending on data acquisition techniques and nature of anatomical

structures of interest, image registration methods vary in their model formulation.

4.1 Types of Models in Image Registration

There are three kinds of registration models mostly used in medical imaging. We

describe these in brief.

The first form of registration is rigid registration. Transforming an object rigidly im-

plies applying a transformation to it such that its shape remains unchanged. In order

to transform the source to match the reference, it is necessary to determine a mapping

from each voxel position in the reference to a corresponding position in the source. A

rigid-body transformation in 3D is defined by 6 degrees of freedom(DOF), namely 3

translation and 3 rotation parameters. For each point x = [x1, x2, x3] in an image, an

affine mapping can be defined onto the co-ordinates of another space y = [y1, y2, y3],

whose relationship is expressed as a simple matrix multiplication y = Mx, where M

is an appropriately constructed matrix from the transformation parameters. For rigid

transformations specially, this is written as y = Rx + T. Here, R is the rotation



www.manaraa.com

34

matrix and T is the translation vector. Their parameters are as follows:

• Translations: If a point x is to be translated by T units, then the transfor-

mation is simply written as y = x + T. In 3D, translation is mathematically

written as T = [Tx, Ty, Tz, 1]> with each component Ti along the ith axis.

• Rotations: In 2D, rotation is defined by a single angle. Consider a point at

co-ordinate (x1, x2) on a two dimensional plane. A rotation of this point to

new co-ordinate (y1, y2) by θ radians around the origin, can be generated by the

transformation y1 = cos(θ)x1 + sin(θ)x2 and y2 = − sin(θ)x1 + cos(θ)x2. Thus,

the rotation matrix in 2D can be written as:

R =

 cos θ sin θ

− sin θ cos θ

 (4.1)

In 3D, there are 3 orthogonal planes that an object can be rotated in. These

planes of rotation are normally expressed as being around the axes. Rotations of

θ1 radians about X-axis, θ2 radians about Y, and θ3 about Z-axis, are combined

as shown in the equation below:

R =


1 0 0 0

0 c1 s1 0

0 −s1 c1 0

0 0 0 1




c2 0 s2 0

0 1 0 0

−s2 0 c2 0

0 0 0 1




c3 s3 0 0

−s3 c3 0 0

0 0 1 0

0 0 0 1

 (4.2)

where ∀i ∈ (1, 2, 3), ci, si denote the cosine and sine of angles θ1, θ2, θ3 respec-

tively. For notational convenience, hereafter first matrix(θ1) is denoted as R1,

second(θ2) as R2 and third(θ3) as R3.



www.manaraa.com

35

Going a step further, non-rigid registration methods aim for an alignment at sub-pixel

level. Non-rigid registration is a two-step process: first, the global motion is corrected

using a rigid or affine transformation. The globally aligned image then becomes the

starting estimate for a second stage, where the local motion is further modeled a local

objective function. The combined model M is as follows:

M(x) = Mglobal(x) + Mlocal(x)

In addition to the 6 DOFs used in rigid registration, a scale parameter(s) is also

introduced in M. In 3D, the scaling matrix(S) is written as follows:

S =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1



where, sx, sy, sz are the scaling factors about the principal axes. The objective func-

tion in such a setup similarly consists of two terms: a global similarity term, which

aligns the source image with approximate correspondence onto the reference, and a

local deformation term, which forces pixel-wise correspondence. Mathematically,

E = Esim(IT ,M(IS(x))) + αEdef (IT ,M(IS(x + u))) (4.3)

Here, u is the local deformation term. The local deformation field u is defined in

the image plane and has different values for adjacent pixels in non-rigid objects. α

is a constant that balances the contributions of the two terms(global motion, local

deformations). The interpretation of this criterion is simple; registration errors caused

by the use of the rigid transformation are corrected using the local deformation field.

Local deformations increase significantly the complexity of the model. A simple way

to decrease this complexity is to constrain the search space. The local deformation

field is to be computed only in the vicinity of the source shape. This hierarchical

framework improves performance of the registration process. At the same time, the
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role of the local registration field is to deal with local deformations and non-rigid

parts. Therefore, local deformations are computed in a small band defined in the

vicinity of the shape. Hence, (4.3) is modified as follows:

E = N(.)Esim(IT ,M(IS(x))) + αN(.)Edef (IT ,M(IS(x + u))) (4.4)

Here, N(.) is a binary function that ensures transformation of only those pixels in

the neighborhood of the reference compartment.

In recent years, a new type of registration scheme has been used for many applica-

tions - this is known as articulated registration. This type of registration refers to

aligning rigid objects with non-rigid connected parts. It is used for applications such

as biometric in radiographs as well as anthropometry and pose estimation [35]. In

such a setup, multiple rigid segments are interconnected at joints which deform elas-

tically to maintain surface continuity. For example, Fig. 4.1(c) illustrates a typical

example of articulated registration. The rigid parts, like bones, are interconnected

by deformable tissue. The goal is to align these anatomical structures, such that the

rigid parts are not allowed to deform, but the joints undergo some degree of deforma-

tion. The main workhorse for solving articulated registration problems are landmark

based approaches. Although such techniques work reasonably well, the selection and

position of control points have critical impact on the performance of these models.

For applications such as those in Fig. 4.1(c), the anatomical points-of-interest, such

as junction of fingers, serve as suitable landmarks which can be used as input for

articulated registration framework.

As mentioned earlier, distinctive features in the reference image are chosen as controls

for initialization. In our method, we formulate a variational registration model using

MCDF descriptors. A major advantage of such a formulation is that convergence

of such a model using a suitable optimization criterion gives us the global optimal

registration parameters. The distance functions used in the process are Euclidean,
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(a) Rigid Registration in Sagittal T1-wighted MRI (Arrows indicate regions of transformation)

(b) Non-rigid Registration of Femur in Adult Male (Arrows indicate regions of deformation)

(c) Articulated Registration of Hands in Radiography (Joints indicated by red circles)

Figure 4.1. Examples of Rigid, Non-rigid and Articulated registration
Left: Reference; Middle: Source; Right: Registered Image



www.manaraa.com

38

which has a convex curvature. Another important advantage is that our model is

non-parametric, which requires minimal tuning of parameters.

4.2 Image Similarity Criteria

An important issue in this context is choosing a suitable similarity criterion Esim.

Any similarity criterion that preserves convexity is best suited for this purpose. The

following are some candidates:

1. Sum-of-Squared-Distances (SSD): SSD is an algorithm for measuring similarity

between images. It works by taking absolute difference between each pixel

in the original image and the corresponding pixel in the transformed image.

These differences are summed, using L1 norm to create a simple metric of image

similarity. Mathematically, this can be stated as follows:

ESSD(I1, I2) =

∫∫
(x,y)∈Ω

(I1(x, y)− I2(x, y))2 dΩ (4.5)

2. Normalized Cross Correlation (NCC): Cross-correlation (CC) is a measure of

similarity between two waveforms in signal processing. In image processing,

cross-correlation between two images is defined as follows:

ENCC(I1, I2) =
1

|I1|

∫∫
(x,y)∈Omega

(I1 × I2)

σI1 × σI2
dΩ (4.6)

where, σI1 and σI2 are the standard deviations of I1 and I2 respectively. In

vector notation, this can be written as follows:

ENCC(I1, I2) =

〈
I1

‖I1‖
,
I2

‖I2‖

〉
(4.7)

3. Mutual Information (MI): Mutual information is an information-theoretic cri-

terion for measuring the global statistical dependency of its two input random
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variables. Mathematically, if l1 and l2 denote intensity (or distance value) ran-

dom variables in the image domains of I1 and I2 respectively, and H represents

the differential entropy, then the similarity function is defined as follows:

EMI(I1, I2) = H
[
pI1(l1)

]
+H

[
pI2(l2)

]
−H

[
pI1,I2(l1, l2)

]
(4.8)

Here, pI1 is the intensity probability density function (p.d.f.) in domain of I1,

pI2 is the intensity p.d.f. in domain of I2 and pI1,I2 is their joint distribution.

Differential entropy H can written as H
[
pI(l)

]
= −

∫
Ω

pI(l) log pI(l)dl.

For our applications, we use SSD and NCC criteria as our similarity function. MI

is usually used in registration of images acquired from different modalities. In the

next section, we describe in details our method of global registration in 3D Neuronal

volume. Note that, we only seek a coarse alignment as we want to preserve the

morphological variance in compartments of MN belonging to different subtypes.

4.3 Motor Neuron Volume Registration

Using the MCDF shape descriptors defined in Eq. (3.14), we seek a method to register

every source volume S with a reference volume R. Therefore, we need a transforma-

tion F that considers the neuron volume as a deformable set of rigid compartments,

to preserve the compartment shape variations. By the latter, we mean that the image

volume, as a whole, deforms. However, the compartments, namely soma, axon and

dendrites are rigid and thus not allowed to deform. The deformations in the set are

due to the changes in joint angle positions. For example, in the hand example (Fig.

4.1c) the compartments, namely phalanges, metacarpels etc. are rigid, although at

the joints, consisting of connective tissue, some degree of deformations is allowed.

Thus in summary, F is a set of parameters that correspond to locally rigid registra-

tions: each compartment is registered as a rigid object (translation and rotation),
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but the relative topology among compartments can change while preserving their

pair-wise adjacency properties. The objective is the minimization of the energy,

E(F) =

∫∫
Ω

∑
i∈{S̄,Ā,D̄}

ξ
(
φRi (x),F [φSi (x)]

)(
φRi (x)−F [φSi (x)]

)2
dx (4.9)

where {S̄, Ā, D̄} denote the compartment labels soma, axon and dendrite, respec-

tively, and φRi and φSi are the MCDFs of the ith compartment in the reference R and

source S volumes, as defined in Eq. (3.14). Here, ξ is the binary function, analo-

gous to N(.) in Eq. (4.4). Given a similarity threshold ε, for any two compartment

MCDF s, φ1 and φ2,

ξ
(
φ1, φ2

)
=

0, ‖φ1 − φ2‖ > ε

1, otherwise

(4.10)

We solve the minimization of Eq. (4.9) using the standard gradient descent Newton

procedure in the transformation parameter space. Specifically, if F = {t, r} is the

set of translation t = {t} and rotation r = {r} parameters, respectively, then in our

approach we calculate,

∆t = 2

∫∫
Ω

∑
i∈{S̄,Ā,D̄}

ξ(φRi , φ
S
i )
∂φRi
∂x

(
φRi −F [φSi ]

)
(4.11)

∆r = 2

∫∫
Ω

∑
i∈{S̄,Ā,D̄}

ξ
(
φRi , φ

S
i

)(
∇φSi .

∂F
∂r

)(
φRi −F [φSi ]

)
(4.12)

Then, given these PDEs in Eq. (4.11, 4.12), we achieve the minimization of the en-

ergy in Eq. (4.9) based on the scheme in Fig. 4.2.

Fig. 4.3 shows the neuron multi-compartment volume alignment during the mini-

mization of Eq. 4.9. It is worthwhile to mention that the compartments are not

registered pixel-wise. This is due to the reason that our goal here is to preserve the

topological variations of the neuronal compartments, alongside getting a coarse align-

ment of the whole volume. In Chapter 5, where we build the Average Shape Model
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input: {φR
S̄
, φR

Ā
, φR

D̄
}, {φS

S̄
, φS

Ā
, φS

D̄
}, F0 = {t0, r0}

Step 1: compute E(F0) from Eq. (4.9)

Step 2: for each compartment, t← t0 + ∆t (Eq. (4.11))

Step 3: for each compartment, r ← r0 + ∆r (Eq. (4.12))

Step 4: set t = {t}, r = {r}, F = {t, r}

Step 5: compute E(F) from Eq. (4.9)

Step 6: If |E(F)− E(F0)| > ε: terminate

else: F0 ← F and go back to step 2

Figure 4.2. Minimization of our objective function in Eq. (4.9).

(a) Iteration #: 3 (b) Iteration #: 13

(c) Iteration #: 22 (d) Iteration #: 28

Figure 4.3. In our model, the multi-compartment sample volume regis-
tration (training phases) is solved as a deformable set of pair-wise ad-
jacent rigid parts. The figure illustrates intermediate iterations dur-
ing minimization of the objective in Eq. (4.9). Reference(R) and
source(S) compartments are shown in {orange, dark green, cyan} and
{red, light green,magenta} respectively.

for ASM, we capture these variations using Principal Component Analysis (PCA) in

the higher dimensional MCDF subspace.

In order to perform a study on the performance of our global registration technique, we

take the 2D similarity transformation model on two horizontal slices from reference(R)
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(a) 2D slice from Reference(R) volume (b) 2D slice from Source(S) volume

(c) Translation in x and r unknown (d) Translation in x and y unknown

Figure 4.4. Empirical validation of convexity

and source(S) volumes, with three parameters: translations in x and y directions,

and the 2D rotation angle. Then, we constrain the unknown parameter space in

two dimensions and empirically evaluate the form of the global registration objective

function Eq. (4.9). In Fig. 4.4, we have studied the following two cases:

1. translation in x and rotation angle r unknown (Fig. 4.4c)

2. translations in x, y directions unknown (Fig. 4.4d),

In each case, we quantized the search space using a uniform sampling of 100 el-

ements for all unknown parameters. Translations in (x, y) were in the range of

[−30, 30] × [−30, 30] and rotation in [−π
3
, π

3
]. Then, we performed an exhaustive

grid search over the space of two unknown parameters, by considering all possible

combinations derived from sampling, while the other parameter was fixed. The re-

sulting objective functional as defined in Eq. 4.9, as shown in Fig. 4.4(c-d) is smooth
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and exhibits a single global minimum. This indicates the well-behaved optimization

criterion with smooth convergence properties.

Next, we discuss another registration method, Non-Rigid or Deformable registration,

where we use MCDF shape descriptors to acquire a global alignment as well as local

pixel-wise deformation. We show application of our method on Directed OCT data.

4.4 D-OCT B-scan Registration

Enhancing the signal-to-noise ration (SNR) in OCT B-scans is an important step

for clinical treatment. When applying OCT for in vivo imaging of the human retina,

small movements of the head and pupils leads to axial movements of the retina relative

to the imaging geometry. In the case of directed OCT, this problem becomes more

challenging due to changes in the beam entry position. The natural solution to such a

problem is a pixel-wise registration of the different orientations of images. Thomadsen

et al. [36] proposed a mean-shift based registration algorithm with a regularization

term to correct vertical and horizontal shifts between corresponding columns of two

retinal scans. Their proposed method primarily corrects global shifts between the

reference and source images. However, to attain a better visualization of the Henle’s

Fiber Layer, it is necessary to project images in all the different orientations onto a

common frame of reference or orientation. (Fig. 1.3) The preferred orientation in

this case is the horizontal direction, or central entry position of the infrared beam.

As discussed before, our goal here is to first find a global alignment of the three ori-

entations of retinal scans onto a common frame of reference. Next, we use this coarse

grained image for local deformations to obtain a pixel-wise mapping. To augment

our registration framework, we first align the foveal center (Fig. 1.3) of the images.

This provides a good initialization to our registration framework.
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Let, F be the set of transformation parameters. F consists of two translation (tx and

ty) parameters, one rotation (θ) and one scale (s) parameter. The objective, similar

to Eq. (4.4), is the minimization of the following energy:

E(F) = α

∫∫
Ω

∑
c

ξ
(
φRc , φ

S
c

)(
sφRc −F [φSc ]

)2
dΩ

+(1− α)

∫∫
Ω

∑
c

ξ
(
φRc , φ

S
c

)(
sφRc −F [φSc (x + u)]

)2
dΩ (4.13)

where, c represents each compartment in (O1, O2, O3) (Fig. 3.2). ξ is the narrow-band

binary function as defined in Eq. (4.10). The interpretation of this criterion is that,

registration errors caused by the use of the rigid transformation are corrected using

the local deformation field(u).

We solve Eq. (4.13) using the standard Quasi-Newton gradient descent method

in the transformation parameter space. We obtain the updates for translation(t),

rotation(θ) and scale(s) parameters using the following partial differential equations.

Translation

∆t = 2α

∫∫
Ω

∑
c

ξ
(
φRc , φ

S
c

)∂φSc
∂x

Esim (4.14)

+2(1− α)

∫∫
Ω

∑
c

ξ
(
φRc , φ

S
c

)∂φSc
∂x

Edeform

Rotation

∆θ = 2α

∫∫
Ω

∑
c

ξ
(
φRc , φ

S
c

)(
∇φIsc ,

∂F
∂θ

)
Esim (4.15)

+2(1− α)

∫∫
Ω

∑
c

ξ
(
φRc , φ

S
c

)(
∇φSc ,

∂F
∂θ

)
Edeform

Scale Factor

∆s = 2α

∫∫
Ω

∑
c

ξ
(
φRc , φ

S
c

)(
φSc −

∂φRc
∂x

Rθ(x)
)
Esim (4.16)

+2(1− α)

∫∫
Ω

∑
c

ξ
(
φRc , φ

S
c

)(
φSc −

∂φRc
∂x

Rθ(x)
)
Edeform
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Deformation

∆u =
∑
c

2
(
1− α

)
ξ
(
φRc , φ

S
c

)
∇xφ

S
c

(
x + u

)
Edeform (4.17)

where Esim =
(
sφRc − F [φSc ]

)
is the global alignment term and Edeform =

(
sφRc −

F [φSc (x + u)]
)

denotes the local deformation field at each pixel x. Rθ denotes the

first derivative of the 2D Rotation matrix (Eq. 4.1). Note that, the deformation

parameter u is computed at each pixel of every iteration. The interpretation of Eq.

(4.13) is simple. The first term aims at finding a pixel-wise distance correspondences

according to a rigid transformation. The second term seeks at correcting the corre-

spondences in the pixel level using a local deformation field over the existing global

model. This analogy is pictorially shown in Fig. 4.5.

(a) Reference(R) (b) Nasal aligned(SL) (c) Registration Error(40%)

(d) Global Registration (e) Global-to-Local Registra-

tion

(f) Registration Error(10%)

Figure 4.5. Global and Global-to-Local Registration

Fig. 4.3 and Fig. 4.5 show that our proposed method is robust and is able to align

compartments with pixel-wise intensity correspondences. Our registration framework
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aligns images or volumes from different viewpoints onto a common reference frame.

The next step is to capture the principal components of shape variances of all these

objects. This is described in Chapter 5.

In summary, in this chapter we formulated a variational level set framework for reg-

istration. Our model is non-parametric, implicitly convex and hence guarantees con-

vergence inside the narrow band of the zero-order level set function. We illustrated

performance of our model in 2D as well as 3D data. Qualitative results indicate

our method is robust, invariant to affine transformations, and can successfully cor-

rect affine motion in varied scenarios. Quantitative analysis and comparisons are

provided in Chapter 6.
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5 MODEL-BASED SEGMENTATION

In this chapter, we discuss in details a popular Top-down model-based segmentation

method, the Active Shape Models (ASM), and its applications to image segmentation.

5.1 Active Shape Models: Modeling and Background

Introduced first by Cootes et al. [20], ASMs are similar to Active Contour Models (or

”Snakes” [8]), in that the shape boundary is modeled by a vector of control points, or

landmarks, which are updated at each iteration conforming to a local profile in the

image domain. A landmark represents a distinguishable point, like a feature, present

in most of the training images under consideration. Shapes are represented as a set of

these landmarks, which are aligned first in all of the training data. The mean shape

is the mean of the aligned training shapes. The ASM starts the search for landmarks

from the mean shape. It then repeats the following two steps until convergence (i)

updates the location of landmarks by template matching of the image texture around

each point (ii) conform the tentative shape to a global shape model. The individual

template matches are unreliable and the shape model pools the results of the weak

template matches to form a stronger overall classifier. Hence, there are two types of

submodel that make up the ASM overall.

1. The profile models (one for each landmark at each pyramid level) are used to

locate the approximate position of each landmark by template matching. Clas-

sical ASM forms a fixed-length normalized gradient vector (called the profile) by

sampling the image along the normal direction to the shape boundary at each

landmark. During training on manually landmarked faces, at each landmark

we calculate the mean profile vector ḡ and the profile covariance matrix Sg.
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During searching, we displace the landmark along the normal line to the pixel

whose profile g has lowest Mahalanobis distance from the mean profile ḡ:

Mahalanobis distance = (g − ḡ)T S−1
g (g − ḡ) (5.1)

2. The shape model specifies allowable motions of landmarks. It generates a shape

x̂ which is defined as follows:

x̂ = x̄ + Φb (5.2)

where x̄ is the mean shape, b is a parameter vector, and Φ is the matrix of

selected eigenvectors of the covariance matrix Ss of the points of the aligned

training shapes. We model the variations in the training set using principal

component analysis (PCA). We can generate various shapes with Eq. 5.2 by

varying the vector parameter b.

Extensions of the ASM model [37] propose an implicit representation of the shape

boundary, like level sets. Level set functions (LSF), as discussed before, are ideal to

account for prior knowledge of shapes. Thus, we represent shapes as zero-order LSF

and update LSFs at each iteration following the ASM framework. In the next section,

we describe the method of modeling prior knowledge in the level set space.

5.2 AGM: Modeling prior Knowledge in Level Sets

Let us consider a training set Ci of N registered curves or surfaces. Also, let the dis-

tance transform used to represent Ci as a LSF be φi. The next step is the construction

of the shape model, using the aligned contours. In order to create an invariant rep-

resentation, we first normalize the training set φi. Subtraction of the mean, obtained

by averaging over φi’s, is a common selection. However, simple averaging would not

provide a distance function. To overcome this limitation, we use a variational method,

seeking to estimate the distance function (φM) that minimizes:
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(a) Mean Image (b) Principal mode(+σ) (c) Principal mode(-σ)

Figure 5.1. Major modes of variations in ASM

E(φM) =
N∑
i=1

∫
Ω

(
φi − φM

)2
dΩ, SUBJECT TO : |∇φM|2 = 1 (5.3)

Eq. (5.3) can be optimized through a gradient descent method:

dφM
dt

=
N∑
i=1

(
φi − φM

)
while φM is projected to the space of the distance functions. The two steps alternate

until convergence. As in Eq. (5.2), once the samples φi are centered with respect to

φM, the most important modes of variations are recovered through PCA:

ψ(λ) = φM +
m∑
i=1

λiUi

where m is the number of retained modes of variation, Ui are these modes (eigenvec-

tors), and λi are the corresponding eigenvalues. ψ is hereafter called as the average

shape model. Fig. 5.1 show an example of our approach in D-OCT images. More-

over, the implicit representation of the surfaces make the modeling phase entirely

automatic.

Next, we formulate the evolution of of a LSF φ(x) towards the average shape model,

under the influence of an affine transformation matrix A(x) = sR(x) + T. Here, s

is the scale factor, R is the rotation matrix following Eq. (4.1) in 2D, and Eq. (4.2)

in 3D, and T is the translation vector. For computational speed, we estimate the
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prior within the vicinity of the zero-order level set representation(ψ). The objective

for evolving φ can be written as:

E(φ,A,λ) =

∫
Ω

ξ(φ)
(
sφ− [φM(A)−

m∑
j=1

λjUj(A)]
)2
dΩ (5.4)

Eq. (5.4) can be optimized using gradient descent Quasi-Newton method for its

parameters. The equation of evolution of φ is given as:

φ:
dφ

dt
= −2

∫
Ω

ξ(φ)
(
sφ− φM(A)

)
−
∫

Ω

ξ(φ)
(
sφ− φM(A)

)2

Differentiation with respect to the modes weights give us a close form of the optimal

parameters by solving the linear system Uλ = b where:

λ:  U(j) =
∫

Ω
ξ(φ)Ui(A)Uj(A)dΩ

b =
∫

Ω
ξ(φ)

(
sφ− φM(A)

)
dΩ

where U is a m×m positive definite matrix. Finally, the energy with respect to the

transformation parameters is minimized using calculus of variations:

Scale Factor:

ds

dt
= 2

∫
Ω

(
sφ− φp(A)

)(
− φ+∇φp(A).

∂A

∂s

)
dΩ

Rotation:

dR

dt
= 2

∫
Ω

(
sφ− φp(A)

)(
∇φp(A) .

∂A

∂R

)
dΩ , R ∈ {R1,R2,R3}

Translation:

dT

dt
= 2

∫
Ω

(
sφ− φp(A)

)(
∇φp(A) .

∂A

∂T

)
dΩ , T ∈ {Tx,Ty,Tz}

where, φp(A) = [φM(A)−
m∑
j=1

λjUj(A)] represents variations of the mean shape φM.

Eq. (5.4) provides a variational framework for level set evolution. Note that, the

above model is automated and requires no manually positioned landmarks. The use
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of LSFs add numerous advantages to the model, and also restricts gaps or overlaps

of the contour boundaries. Also since the distance functions are convex, the resulting

subspace has convex curvature. Thus, optimization using gradient descent methods

provide a global optimal segmentation result. Most importantly, the above model is

flexible and can be generalized to multiple compartments, as in our case. We term this

variant of Active Shape Models as Active Geometric Models (or AGM). Henceforth,

we replace the term ASM with AGM. In sections 5.3 and 5.4, we generalize the above

model for multimodal segmentation, and demonstrate its performance on D-OCT and

MN compartment partitioning respectively.

5.3 AGM: application in 2D (HFL Thickness estimation)

As discussed earlier, the image domain is divided into 3 compartments (Oi, i ∈

(1, 2, 3)). We represent each compartment by its mcdf, φi. The variations of each

compartment is modeled independently. Thus,

ψi = φMi +
m∑
j=1

λijU
i
j , i ∈ (O1, O2, O3)

where, φMi is the mean shape of Oi, computed from Eq. (5.3). λij are the linear weight

factors, and U i
j are the eigenvectors corresponding to the m major modes of variations

for Oi. In this case, the first two modes of variations represent the major part of the

class (90%), while the third one (9%) accounts for non-symmetric properties of the

retinal wall. Notice that, each mcdf φi can be decomposed into the distance functions

ϕ0, and ϕ1, according to Eq. (3.8). Hence, it is not required to store LSF for each

compartment separately. This gives faster convergence as well as less memory over-

head.

Finally, we update φi at each iteration using the following objective.

E(φ,A,λ) =

∫
Ω

N∑
i=1

ξ(φi)
(
sφi − φpi

)2
dΩ
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(a) JC 0382 OD (b) ThDrusen OD (c) Ahrens.Melinda OD

Figure 5.2. Three cases of HFL Thickness estimation. Left: Normal
eye; Center, Right: Pathological eye. HFL boundary is represented by
magenta color, O1 and O3 compartments are denoted by green and blue
colors respectively.

where, φpi = φMi +
m∑
j=1

λijU
i
j . The model parameters are obtained using a similar gra-

dient descent method, as described before.

To obtain better results, we update our model on a coarse-to-fine resolution. Initially,

all the images are scaled by a factor 1
2
. After convergence was reached on one level,

calculations were performed at the next finer level with doubled resolution of the

original size. The distance transform subspace was also appropriately scaled. A few

results are shown in Fig. 5.2. Detailed analysis and comparisons with other current

methods are provided in Chapter 6.

Qualitative results illustrate that our proposed method works robustly, both for nor-

mal and pathological cases. Notice that the shape boundaries are disjoint and also

cater to bending and twisting.

5.4 AGM: application in 3D (Motor Neuron morphology estimation)

Let, each training set consist of the aligned set < φn
S̄
, φn

Ā
, φn

D̄
>, n = 1, · · ·N , that

is, the mcdfs of soma, axon and dendrites. As discussed before, we normalize the

training set by computing the mean, or average shape, over all the training mcdfs.
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Figure 5.3. Neuron volume partitioning using AGM; rows correspond
to two different datasets. Left column: collapsed-stack neuron images,
with the volumes illustrating the intensity in 3D. Right column: resulting
compartment sub-volumes.

Mathematically, for each compartment i =
{
S̄, Ā, D̄

}
, we estimate the mcdf φMi that

minimizes the following objective,

E(φMi ) =
N∑
i=1

∫
Ω

[φni (x)− φMi (x)]2dx

s.t.
∣∣∇φMi ∣∣2 = 1, i ∈ (S̄, Ā, D̄)

Once the samples are normalized, the m most important modes of variations U are

recovered through PCA,

ψi = φMi +
m∑
j=1

λjUj, i ∈ (S̄, Ā, D̄)

Fig. 5.3 shows the neuron partitioning results of our Active Geometric Model. We

provide more results and analysis of other subtypes in Chapter 6. These results show

that our model is able to capture variances in the training data, and successfully

evolves the mean shape contour to fit new test data.
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In summary, in this chapter we provided a variant of ASMs using level sets as shape

parameters. We also extended our model for multi-object segmentation scenarios. It

is to be stressed here that our model is completely non-parametric and hence minimal

manual intervention is needed for training. The use of level set functions augments

our method and achieves faster convergence. Also, our method requires less memory

overhead for multi-compartment partitions, and hence can easily be scaled to data in

higher dimensions.
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6 RESULTS

In this chapter, we provide detailed results and analysis of our proposed method with

applications to Henle’s Fiber Layer (HFL) thickness and Motor Neuron (MN) mor-

phology estimation. We broadly divide this chapter into four sections. In section

6.1, we describe data acquisition methods for imaging Motor Neurons in Drosophila,

as well as retinal B-scan imaging using Optical Coherence Tomography (OCT). In

section 6.2, we provide both qualitative and quantitative of our registration frame-

work. In section 6.3, we benchmark our AGM model against explicit ASM and

multi-compartment level set evolution (MCGM). Finally, in section 6.4, we analyze

the computational throughput of our method compared to those of ASM, MCGM

and Snakes.

6.1 Data Acquisition

Due in large part to the simplicity and morphological stereotype of its neuromus-

cular system, Drosophila has served as an invaluable model in the study of motor

circuit formation. Abdominal hemisegments in the embryo and larva comprise 30

highly stereotyped body wall muscles, each of which is innervated by one or more

of an estimated 38 unique motor neurons. These motor neurons can be subdivided

into distinct classes based on their association with specific nerve branches, and these

subclasses can be further refined by morphological directions.

Our dataset consists of 12 distinct morphological classes of motor neurons that elabo-

rate morphologically similar dendrites and target functionally related muscle subsets.

Despite morphological similarities, the origin and axonal projection patterns of these

motor neurons have been well characterized, and provides reliable foundation for the
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unambiguous identification of single motor neurons. The dendritic morphologies of

individual motor neurons are typically difficult to resolve because of the vast number

of different cell types in the larval CNS. To analyze dendritic arborization patterns of

motor neurons in the larval CNS in detail, we used the mosaic analysis with a repress-

ible cell marker (MARCM) [21] system to genetically label single motor neuron clones

with a membrane-targeted GFP. Although labeled MNs generated by MARCM can be

imaged live in the intact animal, muscle contraction by larva hinders the acquisition

of confocal images through consecutive z positions. The brain and VNC are therefore

exposed by dissection and the tissue is fixed with formaldehyde before immunos-

taining with antibodies directed against mCD8 and a secondary marker, Fasciclin II

(FasII). FasII labels axon fascicles that divide the VNC into distinct territories and

provides a frame of reference in which to map the relative positions of the MN soma

and dendrites [6]. The entire morphology of single MNs is then imaged with laser

scanning confocal microscopy that produces the image stacks to be analyzed. (Fig.

1.2). Here we use only the green channel for the estimation of the neuron morphology.

Healthy normal volunteers and patients with drusen related to non-exudative age-

related macular degeneration (AMD) were imaged. All normal volunteers had visual

acuity of at least 20/40, spherical error within ±6.0 diopters (D), and no evidence

of any other ocular diseases. The patients with non-exudative AMD were enrolled

from the outpatient departments of Bascom Palmer Eye Institute. All eyes were

scanned with the Cirrus OCT instrument by a single experienced technician. 200×200

raster scan patterns were used, each covering a 6 × 6 mm area on the retina with a

homogeneous sampling grid of 200 horizontal B-scans with 200 A-scans per B-scan.

The A-scans are separated by 30 microns in both the horizontal and vertical directions.

Each participant had both eyes scanned. The scans were centered on the fovea based

on the participant’s fixation.
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Figure 6.1. 3D Neuronal volumes. Left: Reference/Static(IR); Center:
Source/Moving(IS); Right: Registered volume. The arrows indicate the
view angle in which results are visualized. Red compartment indicates
soma, green indicates axon and magenta indicates dendrites.

6.2 Image Registration
In this section, we illustrate performance of our model both for rigid/global registra-

tion, applied to align MN compartments, and non-rigid/local registration, applied to

aligning retinal layer in D-OCT B-scans. These are described in order.

We applied our described variational registration method to register 12 pairs of la-

beled MN volumes. These neurons were chosen from three different subtypes - MN1,

MN15/16 and MN9. The neuronal volumes were intensity normalized to within 0 and

255. Thereafter, the reference and source volumes were smoothened using a Gaussian

filter of window size 10 × 10 × 10. Fig. 6.1 show three such results. It is evident

that our method successfully corrects global motion between reference and source vol-
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umes. We remind the reader here that our registration framework, at this point, aims

only for a global alignment between the compartments, so as to preserved individual

topological characteristics of different subtypes.

Figure 6.2. 3D Neuronal volumes registered using SC(Top) and
SIFT(Bottom) as landmark points. We show output on the third pair
from Fig. 6.1. Arrows indicate view angle. Red compartment denotes
soma. green denotes axon and magenta denotes dendrites.

To emphasize the robustness of implicit shape representation in registration, we com-

pare our method with state-of-the-art rigid registration methods using Shape Con-

text (SC) [38] and SIFT [39] feature descriptors. SC descriptors are closer to level

set representation in theory as they too work in the distance transform subspace.

SIFT feature descriptors, on the other hand, account for edges, intensity distribu-

tions, texture and other features to generate the feature vector. Fig. 6.2 illustrates

rigid registration using SC and SIFT feature vectors. Qualitatively, it is seen that

registration using SC descriptors perform better than SIFT. While the results show

efficiency of our framework, we perform detailed statistical analysis to verify our per-

formance measure. A variety of similarity measures have been proposed to measure

registration accuracy. For our experiments, we use Sum-of-Squared-Differences(SSD),
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Correlation-Coefficient (CC) and Chi-squared distance (CHI). SSD and CC met-

rics have been defined in chapter 4. Chi-squared distance measure is defined as

χ2(X, Y ) =
∑
i,j

(Xi,j−Yi,j)2

Xi,j+Yi,j
where X and Y are the normalized images, i and j corre-

spond to pixel(i,j) of the image space. Fig. 6.3 proves that our proposed method

works at par with SC based method, even out-performing SC in certain cases.
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Figure 6.3. Mean metric values for 12 pairs of neuronal volumes are com-
pared using our method, and rigid registration using Shape Context(SC)
and SIFT feature matches.

Next, we demonstrate our method for the purpose of non-rigid registration of retinal

layer in directional B-scans. The image pairs used in all the experiments were first

preprocessed using a Gaussian filter with W/5×H/5, where W and H are the width

and height of the reference image. α was set to 0.25, which gives a smooth defor-

mation field. In fig. 6.4, we show two reference(IR) images, one from a normal eye

and another from a pathological eye. Two sets of source images, one from tempo-

ral displacement(IL) and another in nasal displacement(IR) are used for registration.

Fig. 6.5 also show comparisons of our method with optical-flow based DEMONS algo-

rithm and Free Form Deformation(FFD). Table 6.1 provides the quantitative analysis.

It shows distributions of the pixel mismatches over Ω wrt different optimization cri-

teria. Thus, if I, (|I| = W × H) is the indicator variable for pixels which differ in

absolute intensity in Ω, then reported value = |I 6=0|
|Ω| × 100. Average improvement
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using our method is ∼ 50%. More importantly, these results show that our method

is robust to different optimization criteria.

Figure 6.4. Two horizontal reference images in central entry position.(Left)
Normal eye; (Right) Pathological eye.
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(a) ORIG (b) SSD (c) NCC (d) DEMONS (e) FFD

Figure 6.5. Results of our method using SSD and NCC criteria. Also
shown are results obtained using DEMONS and FFD. Rows 1,2: temporal
orientation of normal and pathlogical eyes. Rows 3,4: nasal orientation
of normal and pathological eyes respectively.
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6.3 Image Segmentation

In this section, we analyze the segmentation results of our model in Motor Neurons

and Henle’s Fiber Layer thickness estimation. We illustrate both qualititative as well

as quantitative results of our method. For quantitative measurements, we validate

the accuracy of our method pixel/voxel-wise, by defining as error percentage (%) of

misclassified pixels with respect to the compartment area (2D) and volume (3D),

error =
|ground truth− estimated|

ground truth
(6.1)

In the application of Motor Neurons, we segmented neuronal volumes from subtypes of

the aforementioned 12 pairs. In Table 6.2, we report results on 6 of these cases. Here,

we report [average, worst-case] errors over all compartments of final segmentation

result.

Table 6.2
Numerical comparisons of our method with ASM and MCGMs.

Subtype Ours ASM MCGM

MN1-lb [7.4,11.3] [9.4,16.9] [15.1,47.9]

MN9-lb [5.3,12.1] [13.8, 24.6] [56.3,77.2]

MN15/16-lb [10.8,18.7] [15.4,25.0] [80.1,91.3]

ISNb [15.9,25.9] [25.5,46.9] [35.1,67.9]

Average Error [9.9,17.0] [16.1,28.4] [46.7,71.1]

Fig. 6.6 shows the qualitative analysis on four neuronal volumes. As anticipated, both

the qualitative and quantitative results indicate the segmentation of the soma yields

lower errors, due to the small shape variation, and relatively constant morphology.

On the other hand, the intensity inhomogenities and random shapes of the dendrites

make their accurate segmentation more challenging.
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Figure 6.6. Results of our segmentation result on neuronal volumes from
different subtypes. Rows 1: MN1-lb, 2: MN9-lb, 3: MN15/16-lb, 4: ISNb.
Red colored compartment denotes soma, green color denotes axon, and
magenta denotes dendrites.
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In the application of HFL, we segmented 10 different retinal B-scans from normal

and pathological eyes. Fig. 6.7 shows the qualitative results of our method compared

with Active Contour Models (ACM) or Snakes [8], a popular segmentation method

based on contour evolution. However, unlike AGM, the contour of each compartment

is represented by a set of control points which evolve during each iteration.

Figure 6.7. Results of our segmentation method(Top) and Snakes(Bottom)
on D-OCT B-scans. Magenta colored compartment denotes the HFL.

Table 6.3 provides quantitative analysis of our method on normal and pathlogical

eyes. It is to be noted here AGM converges faster than Snakes without compromising

segmentation accuracy.

Table 6.3
Numerical comparisons of our method with Snakes. We measure the av-
erage error, defined in Eq. 6.1, in normal and pathological subjects.

Type AGM Snakes

Normal 4.3 7.1

Pathological 9.6 15.2

Average Error 6.9 11.1
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6.4 Time Analysis

In this section, we compare the computational speed of our proposed AGM model

with respect to other methods when applied to rigid and non-rigid registration. We

performed all our experiments on an Intel Xeon Quad-core processor, 3.2 GHz and

12 GB RAM. Table 6.4 shows the convergence throughput of AGM against those of

SC and SIFT based methods. It can be seen that our proposed method converges

at a faster rate than ICP based algorithms on average. This confirms our claim of

using level set functions, rather than feature points, as shape descriptors for better

registration accuracy.

Table 6.4
Performance of AGM with respect to SC and SIFT based methods. Time
reported in seconds.

DataSet AGM SC SIFT Volume Size(in pixels)

1 50 [s] 50.9 [s] 51.7 [s] 1024× 1024× 21

2 41.5 [s] 42.2 [s] 44.1 [s] 1024× 1024× 14

3 56 [s] 58 [s] 61 [s] 1024× 1024× 25

4 43 [s] 44.3 [s] 45.8 [s] 1024× 1024× 15

Average 47.6 [s] 48.5 [s] 50.7 [s]

Next, we measure our performance in respect to non-rigid registration of retinal B-

scan images. Here, we compare our method with DEMONS and FFD based imple-

mentations. Table 6.5 shows the results.

Table 6.5
Performance of AGM with respect to DEMONS and FFD methods. Time
reported in seconds.

Type AGM DEMONS FFD

Normal 14 [s] 12 [s] 18 [s]

Pathological 16 [s] 17 [s] 21 [s]

Average 15 [s] 14.5 [s] 19.5 [s]
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7 SUMMARY

As part of my thesis work we have developed a landmark free model for concurrent

image registration and segmentation of multiple objects in an image domain. This

is, as shown in two applications, an important component for medical research in

different domains. Our method is scalable, topology preserving and computationally

fast as compared to other existing methods in this area. Moreover, the use of level set

functions empowers our model with numerous advantages, like bending or twisting of

shape contours. Also, the variational optimization method used in our work is robust,

parameter free and guarantees convergence due to its convex curvature. With respect

to segmentation, our method has strict shape constraints, which prevent overlaps or

gaps in our result. Finally, our multi-compartment shape descriptors provides an

accurate implicit representation of object morphologies, without any expert interven-

tion.

The future work in this area would be to use more training data to generate our shape

model, in order to capture variances of other subtypes. In our method, we focus on the

Top-down model for segmentation. However, an interesting research problem would

be to merge the Bottom-up and Top-down approaches in image segmentation, with

respect to multi-phase segmentation. Thus, our model could be adapted to account for

low-level cues in the image rather than generating a complex average shape model to

encompass all possible variations. Parallelization of our method and/or performance

on GPU hardware would be another future objective.
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